Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 622(7981): 53-57, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37794267

RESUMEN

Inner-shell electrons naturally sense the electric field close to the nucleus, which can reach extreme values beyond 1015 V cm-1 for the innermost electrons1. Especially in few-electron, highly charged ions, the interaction with the electromagnetic fields can be accurately calculated within quantum electrodynamics (QED), rendering these ions good candidates to test the validity of QED in strong fields. Consequently, their Lamb shifts were intensively studied in the past several decades2,3. Another approach is the measurement of gyromagnetic factors (g factors) in highly charged ions4-7. However, so far, either experimental accuracy or small field strength in low-Z ions5,6 limited the stringency of these QED tests. Here we report on our high-precision, high-field test of QED in hydrogen-like 118Sn49+. The highly charged ions were produced with the Heidelberg electron beam ion trap (EBIT)8 and injected into the ALPHATRAP Penning-trap setup9, in which the bound-electron g factor was measured with a precision of 0.5 parts per billion (ppb). For comparison, we present state-of-the-art theory calculations, which together test the underlying QED to about 0.012%, yielding a stringent test in the strong-field regime. With this measurement, we challenge the best tests by means of the Lamb shift and, with anticipated advances in the g-factor theory, surpass them by more than an order of magnitude.

2.
Phys Rev Lett ; 129(20): 203201, 2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36462009

RESUMEN

Several recent attoclock experiments have investigated the fundamental question of a quantum mechanically induced time delay in tunneling ionization via extremely precise photoelectron momentum spectroscopy. The interpretations of those attoclock experimental results were controversially discussed, because the entanglement of the laser and Coulomb field did not allow for theoretical treatments without undisputed approximations. The method of semiclassical propagation matched with the tunneled wave function, the quasistatic Wigner theory, the analytical R-matrix theory, the backpropagation method, and the under-the-barrier recollision theory are the leading conceptual approaches put forward to treat this problem, however, with seemingly conflicting conclusions on the existence of a tunneling time delay. To resolve the contradicting conclusions of the different approaches, we consider a very simple tunneling scenario which is not plagued with complications stemming from the Coulomb potential of the atomic core, avoids consequent controversial approximations and, therefore, allows us to unequivocally identify the origin of the tunneling time delay.

3.
Nature ; 606(7916): 878-883, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35676477

RESUMEN

Helium-3 has nowadays become one of the most important candidates for studies in fundamental physics1-3, nuclear and atomic structure4,5, magnetometry and metrology6, as well as chemistry and medicine7,8. In particular, 3He nuclear magnetic resonance (NMR) probes have been proposed as a new standard for absolute magnetometry6,9. This requires a high-accuracy value for the 3He nuclear magnetic moment, which, however, has so far been determined only indirectly and with a relative precision of 12 parts per billon10,11. Here we investigate the 3He+ ground-state hyperfine structure in a Penning trap to directly measure the nuclear g-factor of 3He+ [Formula: see text], the zero-field hyperfine splitting [Formula: see text] Hz and the bound electron g-factor [Formula: see text]. The latter is consistent with our theoretical value [Formula: see text] based on parameters and fundamental constants from ref. 12. Our measured value for the 3He+ nuclear g-factor enables determination of the g-factor of the bare nucleus [Formula: see text] via our accurate calculation of the diamagnetic shielding constant13 [Formula: see text]. This constitutes a direct calibration for 3He NMR probes and an improvement of the precision by one order of magnitude compared to previous indirect results. The measured zero-field hyperfine splitting improves the precision by two orders of magnitude compared to the previous most precise value14 and enables us to determine the Zemach radius15 to [Formula: see text] fm.

4.
Phys Rev Lett ; 128(2): 024801, 2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35089763

RESUMEN

A setup of a unique x-ray source is put forward employing a relativistic electron beam interacting with two counterpropagating laser pulses in the nonlinear few-photon regime. In contrast to Compton scattering sources, the envisaged x-ray source exhibits an extremely narrow relative bandwidth of the order of 10^{-4}, comparable with an x-ray free-electron laser. The brilliance of the x rays can be an order of magnitude higher than that of a state-of-the-art Compton source. By tuning the laser intensities and the electron energy, one can realize either a single peak or a comblike x-ray source of around keV energy. The laser intensity and the electron energy in the suggested setup are rather moderate, rendering this scheme compact and tabletop size, as opposed to x-ray free-electron laser and synchrotron infrastructures.

5.
Phys Rev Lett ; 127(7): 072502, 2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34459634

RESUMEN

The cyclotron frequency ratio of ^{187}Os^{29+} to ^{187}Re^{29+} ions was measured with the Penning-trap mass spectrometer PENTATRAP. The achieved result of R=1.000 000 013 882(5) is to date the most precise such measurement performed on ions. Furthermore, the total binding-energy difference of the 29 missing electrons in Re and Os was calculated by relativistic multiconfiguration methods, yielding the value of ΔE=53.5(10) eV. Finally, using the achieved results, the mass difference between neutral ^{187}Re and ^{187}Os, i.e., the Q value of the ß^{-} decay of ^{187}Re, is determined to be 2470.9(13) eV.

7.
Nature ; 581(7806): 42-46, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32376960

RESUMEN

State-of-the-art optical clocks1 achieve precisions of 10-18 or better using ensembles of atoms in optical lattices2,3 or individual ions in radio-frequency traps4,5. Promising candidates for use in atomic clocks are highly charged ions6 (HCIs) and nuclear transitions7, which are largely insensitive to external perturbations and reach wavelengths beyond the optical range8 that are accessible to frequency combs9. However, insufficiently accurate atomic structure calculations hinder the identification of suitable transitions in HCIs. Here we report the observation of a long-lived metastable electronic state in an HCI by measuring the mass difference between the ground and excited states in rhenium, providing a non-destructive, direct determination of an electronic excitation energy. The result is in agreement with advanced calculations. We use the high-precision Penning trap mass spectrometer PENTATRAP to measure the cyclotron frequency ratio of the ground state to the metastable state of the ion with a precision of 10-11-an improvement by a factor of ten compared with previous measurements10,11. With a lifetime of about 130 days, the potential soft-X-ray frequency reference at 4.96 × 1016 hertz (corresponding to a transition energy of 202 electronvolts) has a linewidth of only 5 × 10-8 hertz and one of the highest electronic quality factors (1024) measured experimentally so far. The low uncertainty of our method will enable searches for further soft-X-ray clock transitions8,12 in HCIs, which are required for precision studies of fundamental physics6.

8.
Phys Rev Lett ; 124(11): 113001, 2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-32242713

RESUMEN

First ever measurements of the ratios of free cyclotron frequencies of heavy, highly charged ions with Z>50 with relative uncertainties close to 10^{-11} are presented. Such accurate measurements have become realistic due to the construction of the novel cryogenic multi-Penning-trap mass spectrometer PENTATRAP. Based on the measured frequency ratios, the mass differences of five pairs of stable xenon isotopes, ranging from ^{126}Xe to ^{134}Xe, have been determined. Moreover, the first direct measurement of an electron binding energy in a heavy highly charged ion, namely of the 37th atomic electron in xenon, with an uncertainty of a few eV is demonstrated. The obtained value agrees with the calculated one using two independent, different implementations of the multiconfiguration Dirac-Hartree-Fock method. PENTATRAP opens the door to future measurements of electron binding energies in highly charged heavy ions for more stringent tests of bound-state quantum electrodynamics in strong electromagnetic fields and for an investigation of the manifestation of light dark matter in isotopic chains of certain chemical elements.

9.
Nat Commun ; 10(1): 5651, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31827086

RESUMEN

Recent theoretical works have proposed atomic clocks based on narrow optical transitions in highly charged ions. The most interesting candidates for searches of physics beyond the Standard Model are those which occur at rare orbital crossings where the shell structure of the periodic table is reordered. There are only three such crossings expected to be accessible in highly charged ions, and hitherto none have been observed as both experiment and theory have proven difficult. In this work we observe an orbital crossing in a system chosen to be tractable from both sides: Pr[Formula: see text]. We present electron beam ion trap measurements of its spectra, including the inter-configuration lines that reveal the sought-after crossing. With state-of-the-art calculations we show that the proposed nHz-wide clock line has a very high sensitivity to variation of the fine-structure constant, [Formula: see text], and violation of local Lorentz invariance; and has extremely low sensitivity to external perturbations.

10.
Phys Rev Lett ; 122(25): 253001, 2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31347869

RESUMEN

We have measured the ground-state g factor of boronlike argon ^{40}Ar^{13+} with a fractional uncertainty of 1.4×10^{-9} with a single ion in the newly developed Alphatrap double Penning-trap setup. The value of g=0.663 648 455 32(93) obtained here is in agreement with our theoretical prediction of 0.663 648 12(58). The latter is obtained accounting for quantum electrodynamics, electron correlation, and nuclear effects within the state-of-the-art theoretical methods. Our experimental result distinguishes between existing predictions that are in disagreement, and lays the foundations for an independent determination of the fine-structure constant.

11.
Phys Rev Lett ; 121(17): 173005, 2018 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-30411962

RESUMEN

The reconstruction of the full temporal dipole response of a strongly driven time-dependent system from a single absorption spectrum is demonstrated, only requiring that a sufficiently short pulse is employed to initialize the coherent excitation of the system. We apply this finding to the time-domain observation of Rabi cycling between doubly excited atomic states in the few-femtosecond regime. This allows us to pinpoint the breakdown of few-level quantum dynamics at the critical laser intensity near 2 TW/cm^{2} in doubly excited helium. The present approach unlocks single-shot real-time-resolved signal reconstruction across timescales down to attoseconds for nonequilibrium states of matter. In contrast to conventional pump-probe schemes, there is no need for scanning time delays in order to access real-time information. The potential future applications of this technique range from testing fundamental quantum dynamics in strong fields to measuring and controlling ultrafast chemical and biological reaction processes when applied to traditional transient-absorption spectroscopy.

12.
Science ; 357(6349): 375-378, 2017 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-28751603

RESUMEN

Spectroscopy of nuclear resonances offers a wide range of applications due to the remarkable energy resolution afforded by their narrow linewidths. However, progress toward higher resolution is inhibited at modern x-ray sources because they deliver only a tiny fraction of the photons on resonance, with the remainder contributing to an off-resonant background. We devised an experimental setup that uses the fast mechanical motion of a resonant target to manipulate the spectrum of a given x-ray pulse and to redistribute off-resonant spectral intensity onto the resonance. As a consequence, the resonant pulse brilliance is increased while the off-resonant background is reduced. Because our method is compatible with existing and upcoming pulsed x-ray sources, we anticipate that this approach will find applications that require ultranarrow x-ray resonances.

13.
Phys Rev Lett ; 116(10): 100801, 2016 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-27015466

RESUMEN

A weighted difference of the g factors of the H- and Li-like ions of the same element is theoretically studied and optimized in order to maximize the cancellation of nuclear effects between the two charge states. We show that this weighted difference and its combination for two different elements can be used to extract a value for the fine-structure constant from near-future bound-electron g factor experiments with an accuracy competitive with or better than the present literature value.

14.
Phys Rev Lett ; 114(15): 150801, 2015 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-25933300

RESUMEN

We measure optical spectra of Nd-like W, Re, Os, Ir, and Pt ions of particular interest for studies of a possibly varying fine-structure constant. Exploiting characteristic energy scalings we identify the strongest lines, confirm the predicted 5s-4f level crossing, and benchmark advanced calculations. We infer two possible values for optical M2/E3 and E1 transitions in Ir^{17+} that have the highest predicted sensitivity to a variation of the fine-structure constant among stable atomic systems. Furthermore, we determine the energies of proposed frequency standards in Hf^{12+} and W^{14+}.

15.
Nat Commun ; 6: 6747, 2015 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-25903920

RESUMEN

Electron-positron pair plasmas represent a unique state of matter, whereby there exists an intrinsic and complete symmetry between negatively charged (matter) and positively charged (antimatter) particles. These plasmas play a fundamental role in the dynamics of ultra-massive astrophysical objects and are believed to be associated with the emission of ultra-bright gamma-ray bursts. Despite extensive theoretical modelling, our knowledge of this state of matter is still speculative, owing to the extreme difficulty in recreating neutral matter-antimatter plasmas in the laboratory. Here we show that, by using a compact laser-driven setup, ion-free electron-positron plasmas with unique characteristics can be produced. Their charge neutrality (same amount of matter and antimatter), high-density and small divergence finally open up the possibility of studying electron-positron plasmas in controlled laboratory experiments.

16.
Phys Rev Lett ; 113(22): 224801, 2014 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-25494074

RESUMEN

We report on the generation of a narrow divergence (θ_{γ}<2.5 mrad), multi-MeV (E_{max}≈18 MeV) and ultrahigh peak brilliance (>1.8×10^{20} photons s^{-1} mm^{-2} mrad^{-2} 0.1% BW) γ-ray beam from the scattering of an ultrarelativistic laser-wakefield accelerated electron beam in the field of a relativistically intense laser (dimensionless amplitude a_{0}≈2). The spectrum of the generated γ-ray beam is measured, with MeV resolution, seamlessly from 6 to 18 MeV, giving clear evidence of the onset of nonlinear relativistic Thomson scattering. To the best of our knowledge, this photon source has the highest peak brilliance in the multi-MeV regime ever reported in the literature.

17.
Phys Rev Lett ; 113(2): 025005, 2014 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-25062199

RESUMEN

A laser-boosted relativistic solid-density paraboloidal foil is known to efficiently reflect and focus a counterpropagating laser pulse. Here we show that in the case of an ultrarelativistic counterpropagating pulse, a high-energy and ultrahigh-intensity reflected pulse can be more effectively generated by a relatively slow and heavy foil than by a fast and light one. This counterintuitive result is explained with the larger reflectivity of a heavy foil, which compensates for its lower relativistic Doppler factor. Moreover, since the counterpropagating pulse is ultrarelativistic, the foil is abruptly dispersed and only the first few cycles of the counterpropagating pulse are reflected. Our multidimensional particle-in-cell simulations show that even few-cycle counterpropagating laser pulses can be further shortened (both temporally and in the number of laser cycles) with pulse amplification. A single few-cycle, multipetawatt laser pulse with several joules of energy and with a peak intensity exceeding 10(23) W/cm(2) can be generated already employing next-generation high-power laser systems. In addition, the carrier-envelope phase of the generated few-cycle pulse can be tuned provided that the carrier-envelope phase of the initial counterpropagating pulse is controlled.

18.
Nature ; 506(7489): 467-70, 2014 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-24553144

RESUMEN

The quest for the value of the electron's atomic mass has been the subject of continuing efforts over the past few decades. Among the seemingly fundamental constants that parameterize the Standard Model of physics and which are thus responsible for its predictive power, the electron mass me is prominent, being responsible for the structure and properties of atoms and molecules. It is closely linked to other fundamental constants, such as the Rydberg constant R∞ and the fine-structure constant α (ref. 6). However, the low mass of the electron considerably complicates its precise determination. Here we combine a very precise measurement of the magnetic moment of a single electron bound to a carbon nucleus with a state-of-the-art calculation in the framework of bound-state quantum electrodynamics. The precision of the resulting value for the atomic mass of the electron surpasses the current literature value of the Committee on Data for Science and Technology (CODATA) by a factor of 13. This result lays the foundation for future fundamental physics experiments and precision tests of the Standard Model.

19.
Phys Rev Lett ; 110(25): 255002, 2013 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-23829742

RESUMEN

The generation of ultrarelativistic positron beams with short duration (τ(e+) ≃ 30 fs), small divergence (θ(e+) ≃ 3 mrad), and high density (n(e+) ≃ 10(14)-10(15) cm(-3)) from a fully optical setup is reported. The detected positron beam propagates with a high-density electron beam and γ rays of similar spectral shape and peak energy, thus closely resembling the structure of an astrophysical leptonic jet. It is envisaged that this experimental evidence, besides the intrinsic relevance to laser-driven particle acceleration, may open the pathway for the small-scale study of astrophysical leptonic jets in the laboratory.

20.
Nature ; 492(7428): 225-8, 2012 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-23235875

RESUMEN

Highly charged iron (Fe(16+), here referred to as Fe XVII) produces some of the brightest X-ray emission lines from hot astrophysical objects, including galaxy clusters and stellar coronae, and it dominates the emission of the Sun at wavelengths near 15 ångströms. The Fe XVII spectrum is, however, poorly fitted by even the best astrophysical models. A particular problem has been that the intensity of the strongest Fe XVII line is generally weaker than predicted. This has affected the interpretation of observations by the Chandra and XMM-Newton orbiting X-ray missions, fuelling a continuing controversy over whether this discrepancy is caused by incomplete modelling of the plasma environment in these objects or by shortcomings in the treatment of the underlying atomic physics. Here we report the results of an experiment in which a target of iron ions was induced to fluoresce by subjecting it to femtosecond X-ray pulses from a free-electron laser; our aim was to isolate a key aspect of the quantum mechanical description of the line emission. Surprisingly, we find a relative oscillator strength that is unexpectedly low, differing by 3.6σ from the best quantum mechanical calculations. Our measurements suggest that the poor agreement is rooted in the quality of the underlying atomic wavefunctions rather than in insufficient modelling of collisional processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...